Multi-Channel Random-Quadrature Receiver for Industrial Laser-Ultrasonics

B. Pouet, A. Wartelle and S. Breugnot
Bossa Nova Technologies, Venice, CA 90291, USA
Multi-Channel Random-Quadrature (MCRQ) Interferometer

- Principle of operation
- Optical design
 - Fiber design (Free-space design)
- Electronic demodulation
 - Rectified
 - Linear
- Characterization & results
- Conclusions
Multi-Channel Random-Quadrature (MCRQ) Interferometer

Principle
- Classic reference beam interferometer architecture
- Use of a detector array instead of single-element detector
- Parallel processing for each channel

![Diagram of MCRQ Interferometer](image)

Single detector interference signal

\[2 \sqrt{I_{\text{Ref}} \cdot I_{\text{Obj}} \cdot \cos(\phi_{\text{LF}}(t) + \phi_{\text{UT}}(t))} \]

- \(\phi_{\text{LF}} \): Speckle Phase / \(\phi_{\text{UT}} \): Ultrasonic Phase / \(I_{\text{Ref}} \) & \(I_{\text{Obj}} \): Reference Beam and Object Beam Intensities
Compact Fiber Design

Partial reflection (~5%) at the fiber end generating the reference beam.

Multi-channel Detector - 1

Multi-channel Detector - 2

PBS: Polarizing Beam Splitter

Optical Isolator

Laser

Signal Processing

Complete system with internal 1-Watt laser

Optical Head

MULTIMODE FIBER (50μm)

PARTIAL REFLECTION Not used (AR coating)

Fiber tip mounted on vibrating piezo

PARTIAL REFLECTION (~5%) AT THE FIBER END GENERATING THE REFERENCE BEAM

光学头
Salient Features of Fiber Design

- **Multimode fiber**
 - Same fiber for delivery and collection
 - Not critical coupling/alignment

- **Fiber length is not critical**: *Path difference between interfering beams is independent of fiber length*

- **Faraday isolator**
 - Protect laser from feedback
 - Efficient use of collected light
 - No polarization losses

- **For optimal detection**
 - Dominant noise source → Shot noise from reference beam
 - Higher frequency requires higher intensity on detector (*laser power / reflection coefficient at fiber end*).
 - Electronic noise 5dB below total noise → 17% added noise compared to shot-noise limit.
Salient Features of Fiber Design

- **Multimode fiber**
 - Same fiber for delivery and collection
 - Not critical coupling/alignment

- **Fiber length is not critical**: Path difference between interfering beams is independent of fiber length

- **Faraday isolator**
 - Protect laser from feedback
 - Efficient use of collected light
 - No polarization losses

- **For optimal detection**
 - Dominant noise source → Shot noise from reference beam
 - Higher frequency requires higher intensity on detector \((laser \text{ power} / \text{reflection coefficient at fiber end})\).
 - Electronic noise 5dB below total noise → 17% added noise compared to shot-noise limit
Salient Features of Fiber Design

- **Multimode fiber**
 - Same fiber for delivery and collection
 - Not critical coupling/alignment

- **Fiber length is not critical**: *Path difference between interfering beams is independent of fiber length*

- **Faraday isolator**
 - Protect laser from feedback
 - Efficient use of collected light
 - No polarization losses

- **For optimal detection**
 - Dominant noise source → Shot noise from reference beam
 - Higher frequency requires higher intensity on detector (*laser power / reflection coefficient at fiber end*).
 - Electronic noise 5dB below total noise → 17% added noise compared to shot-noise limit
Salient Features of Fiber Design

- **Multimode fiber**
 - Same fiber for delivery and collection
 - Not critical coupling/alignment

- **Fiber length is not critical**: *Path difference between interfering beams is independent of fiber length*

- **Faraday isolator**
 - Protect laser from feedback
 - Efficient use of collected light
 - No polarization losses

- **For optimal detection**
 - Dominant noise source → Shot noise from reference beam
 - Higher frequency requires higher intensity on detector (*laser power / reflection coefficient at fiber end*).
 - Electronic noise 5dB below total noise
 → 17% added noise compared to shot-noise limit

- Laser Power = 500mW / \(\lambda = 532 \text{nm} \)
- Reflection at uncoated fiber end ~ 4.5%
- Detector Array: 2 x 25-Element
- Detection bandwidth = 50MHz
Electronic Demodulation

- **Single detector interference signal**
 \[2 \sqrt{I_{Ref} \cdot I_{Obj}} \cdot \cos(\phi_{LF}(t) + \varphi_{UT}(t)) \]

- **Homodyne interferometer transfer function**

- **Uniform speckle phase distribution**: 50% In-quadrature + 50% Out-of-quadrature
 \[(\phi_{LF} = -\pi/2, +\pi/2) \] \[(\phi_{LF} = 0, \pi) \]

- **Demodulation**
 To remove the sign ambiguity: Correction needed for each channel
Absolute Amplitude Demodulation

Single detector signal (AC only)

\[
\cos(\phi_{LF}(t) + \varphi_{UT}(t)) \rightarrow \cos(\phi_{LF}(t)) \cdot \cos(\varphi_{UT}(t)) - \sin(\phi_{LF}(t)) \cdot \sin(\varphi_{UT}(t)) \approx 1
\]

- Low frequency
- High frequency, small amplitude

After high-pass filter (Background vibration rejection)

\[
\cos(\phi_{LF}(t)) - \sin(\phi_{LF}(t)) \cdot \varphi_{UT}(t)
\]

Rectification and multi-channel summation

\[
\sum_{n} |\sin(\phi_{LF}(t))| \cdot |\varphi_{UT}(t)| = |\varphi_{UT}(t)| \sum_{n} |\sin(\phi_{LF}(t))| \rightarrow n \cdot \frac{2}{\pi}
\]

- Simple electronic design
- Low-cost
- Off-the-shelf components
- Output \(\propto \) Rectified displacement
- Stability increases with the number of channels
Demodulation overview

- **Demodulation based on signal rectification.**
 - Simple and robust setup
 - Very effective rejection of background noise vibration (electronic filtering)
 - Direction of displacement is not known

- **Linear demodulation**
 - To use the same compact multi-channel architecture with simple demodulation scheme in order to get an output signal proportional to the displacement.
 - Principle:
 - To introduce a known perturbation
 - Direction of displacement is known by monitoring the known perturbation
 - Sign correction applied for each channel before summation
Linear Demodulation — Principle —

- To introduce a known perturbation
 - Doppler shift
 - Small single frequency vibration
Linear Demodulation — Principle —

- To introduce a known perturbation: \(\cos(\phi_{LF}(t) + \text{perturbation} + \varphi_{UT}(t)) \)

 - Doppler shift
 - Small single frequency vibration

 High-Frequency component of the interference signal
 \[V_{HF} \propto -\sin[\phi_{LF}(t)] \cdot \varphi_{UT}(t) + \varphi_{LF}(t) + \varphi_{UT}(t) \sin(\omega_{R} \cdot t) \]

 Sign Ambiguity

 Speckle & LF vibration

 UT Signal

 Small Reference Signal @ \(\omega_{R} \)

 Amplitude of Interference signal at \(\omega_{R} \)
 \[V_{\omega_{R}} \propto -\sin[\phi_{LF}(t)] \cdot \varphi_{R} \]

 Monitoring the phase of the interference signal at \(\omega_{R} \)
 \(\Rightarrow \) Lock-in detection

 Monitoring the sign to remove ambiguity

 Requirement: \(\omega_{D} > \frac{\partial \phi_{LF}(t)}{\partial t} \) (Doppler perturbation dominates)

 Low-Frequency component of the interference signal
 \[V_{LF} \propto \cos[\phi_{LF}(t) + \omega_{D}t] \]

 Derivative of Low-Frequency component
 \[\frac{\partial V_{LF}}{\partial t} \propto -\sin[\phi_{LF}(t) + \omega_{D}t] \left(\frac{\partial \phi_{LF}(t)}{\partial t} + \omega_{D} \right) \]
Linear Demodulation – **Principle** –

- **To introduce a known perturbation**
 - Doppler shift
 - Small single frequency vibration

- **For each channel:**
 - Monitoring of the perturbation
 - To put each channel in-phase

- **Doppler shift detection**
 - LF signal
 - Comparator
 - Logic control

- **Lock-in detection** (Small single frequency vibration)
 - HF signal
 - XOR
 - Comparator
 - Logic control

- **System Diagram**
 - HF signal
 - Polarity Select
 - Switch
 - Polarity Detector
 - Control
 - R
 - C
 - Derivator
 - Comparator
 - Logic control

Diagram Elements:
- **Polarity Detector**
- **Control**
- **Switch**
- **LF signal**
- **Comparator**
- **Logic control**
- **R**
- **C**
- **Derivator**
- **XOR**
- **Calibration Reference**
- **Time**

Footer:
June 2013 – LU2013
Linear Demodulation — Principle —

- To introduce a known perturbation
 - Doppler shift
 - Small single frequency vibration

- For each channel:
 - Monitoring of the perturbation
 - To put each channel in-phase

- Summation of in-phase channels
Linear Demodulation — Schematic —
(With Lock-in on small single frequency vibration)
Linear Demodulation – Performances –

- Laser Power = 500mW / λ=532nm
- Detector Array: 2 x 25 elements
- Calibration signal @ 1MHz
- Detection bandwidth = 50MHz

Frequency response (Detection Bandwidth=50MHz)

- 1MHz Calibration
- Output Noise
- Electronic noise
- 50MHz

Rejection of Intensity noise

After differential amplifier:
- Intensity noise (coherent) is subtracted
- Shot noise (random) is added
System Performances & Features

• Detection bandwidth (for electronic noise < shot noise)
 • 50MHz → 500mW laser power
 • Higher bandwidth → higher laser power

• Adaptation time
 • Linear Demodulation (lock-in + switch response) → ≤ 15μS
 → Switching occurs when channel is not sensitive
 • Rectified Demodulation → set by high-pass filter → ≤ 2μS (F_c=1MHz)

• Reference signal → Can be set below or above the detect bandwidth

• For on-line application → linear demodulation using the Doppler induced by off-normal observation of moving target
Linear vs Rectified
- side-by-side comparison -

PIEZo (Ø1/2 inch) (2.25MHz)

SAMPLE - Rough surface - (Aluminum, 12.5mm thick)

Experimental Setup
Interferometer (rectified demodulation)
Interferometer (linear demodulation)

Piezo

Oscilloscope Display
- Single Shot signals -

- Detection Bandwidth [20MHz] -
Monitoring of ultrasonic emission (UE) during Laser welding*

APPLICATION: In-process monitoring of weld quality by continuous monitoring of the ultrasonic emission (UE) generated by the welding process during high-speed laser welding.

EXPERIMENTAL SET-UP:
- Welding system: 600W CW Laser
- Samples: 100μm thick stainless steel
- Detection BW: [200kHz – 10MHz]
- Welding speed = 100mm/s
- Offset (weld - detection)= 5mm
- UE integration window = 200μs

* Collaboration with the Edison Welding Institute, Dayton, OH.
Thickness measurement on moving sample

Sample:
- Oxidized steel plate, 2mm thick
- Rotating sample, Transverse velocity up to 3m/s

Detection:
- MCRQ interferometer ($\lambda=532\text{nm} / 200\text{mW}$)
- Rectified demodulation: [1MHz – 20MHz]
- Stand-off distance = 20cm

Generation:
- Energy $\sim 50\text{mJ}$ / Thermoelastic regime
- NdYag pulsed laser, $\lambda=1064\text{nm}$
- Repetition rate =17Hz
- Pulse duration =10ns,
- Spot size $\sim 5\text{mm}$

![Zoom](image.png)

![FFT](image.png)

![Experiment Setup](image.png)
Thickness measurement on moving sample

Sample:
- Oxidized steel plate, 2mm thick
- Transverse velocity = 2m/s

Detection:
- MCRQ interferometer
- Laser ($\lambda=532$nm / 200mW)
- Rectified demodulation:
 - Bandwidth [1MHz – 20MHz]
- Stand-off distance = 20cm

Generation:
- Nd3Yag pulsed laser $\lambda=1064$nm
- Thermoelastic regime
- Pulse duration =10ns,
- Repetition rate =17Hz
- Spot size ~5mm
Conclusions

Multi-channel random quadrature (MCRQ) interferometer

- Takes advantage of the speckle random distribution.
- Well suited for either free-space design or fiber design
- Simple and robust optical setup: No critical alignment
- Demodulation is kept very simple ➔ Easy multi-channel integration
- Output Signals:
 - Rectified response *(High-pass filter rejects background perturbations)*
 - Linear response *(Demodulation synchronized on applied perturbations:
 * Lock-in on reference signal or **Synchronization on induced Doppler)*
- Intensity noise Rejection ➔ Built-in with linear demodulation
- Signal stability achieved through summation of multiple channels
 (Averaging of the random process)